CoroMill790的改进在研发用于铝合金加工的新型立铣刀概念时,可以通过修改一系列参数来取得使用可转位刀片进行径向铣削时关键性的突破。主要的技术难点包括:平稳的切削作用;良好的切屑形成;极高的材料去除率;低功耗;很好的表面粗糙度和最小的接刀痕迹;确保高转速下刀具的安全性。
加工铝合金,尤其是在小余量切削的精加工时,可转位刀片刃口通常显得较钝,常常导致“犁削”效应的产生,切削刃也容易猛然切入工件,引起切削力突然增加。切削力的突然增加导致让刀过大以及功率需求过高。上述问题因切削刃的需求而变得更为复杂,精加工时必须使用锋利的正前角切削刃,而粗加工时为确保金属去除率,要求切削刃具有足够强度。因此,考虑到切削力、切削刃切入、切屑形成、稳定性以及刀片定位和夹紧,需要一种新的方法来使用可转位刀片。
切削刃上所产生的切削力当铣削刀具的切削刃切入工件时,猛然的撞击将引起刀具的振动。所产生的切削力主要取决于切屑厚度,该厚度与进给成一定比例。最初诱发的刀具振动将改变后续的切屑厚度,随后当切削力变化而反过来引起加工系统的振动加剧时,该厚度可能还会继续增加。切削力的方向和变动幅度在很大程度上决定了振动趋势。此类再生振动也称作颤振,如果不加以抑制,切削力的变化幅度就会增大,从而使切削后的表面粗糙度下降,产生接刀,甚至导致切削刃和刀具损坏,此外还会对机床主轴产生不利影响。
为此,必须在切削开始时就抑制切削力的剧烈的变动从而抑制振动趋势,这也是采用防振刀具的主要原因。不过在许多情况下,这是通过对刀片结构参数进行优化而实现的。建立合乎要求的模型(能够准确计算和预测切削力)是开发新刀片槽形的主要依据之一。随后,高级FEM仿真展示了许多答案,涉及刃线、前角和断屑器的组合式设计以及刀片后刀面上的切削刃新特性的开发与优化。这在很大程度上基于通过测定的模态参数而计算出的振动波形。
|