会员登录 | 免费注册
压铸模具,北仑压铸,北仑模具,北仑压铸模具  
铸造模具的修复以及维护
来源:  阅读次数:1523  时间:2016-08-03  
 

 

核心提示:利用 PRO/E 和 PROCAST 建立了前盖铝合金压铸的三维有限元模型,分析了压铸模热平衡的形成及模具材料对距模具型腔表面不同位置点的温度的影响。 结果表明 : 导热系数越小,模具材料型腔表面温度波动越大,次表面的温度波动幅度越小。

 

铝合金压铸模的主要失效形式为热疲劳。 铝 合金的熔化温度为 600~760℃ ,其压铸模型腔表面 温度高达 600℃ 以上,热疲劳失效约占 70%。 热 疲劳主要是由于在压铸循环中, 热应力大于热疲劳 强度极限。而热应力又是由压铸模温度波动导致的。 所以摸清铝合金压铸循环过程中压铸模温度的演化 规律以及热平衡的形成就变得越来越重要。赵信毅、 Hsieh 、李朝霞、张光明等人分别研究了冷却工艺、冷 却水温及冷却管径、模具预热温度、浇注温度等因素 对镁合金铝合金铸件和模具温度场的影响。 但 是模具材料对热平衡影响的未见报道, 而模具材料 对铝合金压铸模温度、 热平衡以及使用寿命有非常重要的影响。

本文采用 PRO/E 和 PROCAST 软件,以前盖铝 合金压铸件为例, 通过对其压铸循环过程中温度场 的模拟,研究压铸模的热平衡的形成,模具材料对距 模具型腔表面不同位置点的温度曲线的影响, 分析 模具材料对热平衡形成规律的影响, 为选定合理的 模具材料提供指导。

1 模型的建立及参数设置

1.1 模型的建立

图 1 为前盖铝合金零件图, 其材质为 A390 铝 合金。 图 2 为定动模部分简化模型。

1.2 参数设置

动定模的预热温度为200℃,浇注温度为700℃ ,铸件与模具的换热系数为1500W/(m2·C),模具间的换热系数为1000W/(m2·C) ,模具与空气的换 热系数为5W/(m2·C),模具与脱模剂的换热系数为500W/(m2·C)。 由于金属液瞬间充满型腔,与此同时本模拟重点考虑是模具,故不考虑充型过程。循环周 期为30s,第0s开始充型,第15s开模,第20s推出 压铸件,第23s喷脱模剂,第25s喷涂结束,第29s合模。

1.3 物性参数

模具材料采用性能差别大的 H13 、陶瓷和纯铜。 影响模具温度的主要因素为模具材料的热导率和比 热容。 图 3 为模具材料的热导率。

2 模拟结果及分析

选取动模中间截面上的5个节点为分析对象。 图4为截面位置及节点位置图。节点1~5分别代表 图4(b)中从上到下的5个点。节点1在型腔表面,节点5离型腔表面距离最远。

图5为压铸模从预热温度To到稳态的升温示 意图。 压铸模从第 1 个压铸循环前的平均的预热 温度To增加到稳态的温度Tmin 。从图5可以得到,任 意一个压铸循环开始时模具上某点的温度(Ti) ,在达 到稳态前可以表示为模具预热温度与该压铸循环前 经历的每一个压铸循环的温度增量(δT)之和:

T i =δT i-1 +δT i-2 +δT i-3 + …… +T 0 =T 0 +ΔT (1)

压铸模内各点温度的变化通过连续的压铸模拟来实 现,每一次工作循环都是冷却、开模、喷脱模剂、合模 几个阶段构成。将上述温度场的模拟过程继续下去, 达到热平衡时 T max 和 T min 保持为常数, 每次压铸循 环温度增量 (δT) 为零。

图 6 为 H13 、 铜和陶瓷模具材料连续压铸时 5 节点温度变化曲线。从图 6 中可以看出,模具温度从 预热温度 200℃ 经过大约 50 个压铸循环,压铸模具 温度变化趋于稳定,压铸模进入热平衡状态。在这个 热平衡形成过程中,随着循环的进行,模具表面的 5 个节点的温度每循环一次整体温度提高 δT 不尽完 全相同,开始压铸循环时 δT 值最大,随着压铸次数 增加, δT 越来越小,当达到热平衡后 δT 为零。 距型 腔表面最近的节点 1 每次循环的温度波动 (T max -T min ) 最大。离型腔表面越远的节点温度波动越小。图 6(a) 中 5 个节点的温度波动差别不大, 最重要原因是铜的导热系数很大, 导致温度从型腔表面向基体或从 基体向表面传递很快,所以温度波动厚度比较大。图 6(b) 中陶瓷模具材料的 5 个点只有节点 1 有温度波 动,其它 4 个节点在每个循环基本没有温度波动。这 主要是由于陶瓷的热导率很低, 每次压铸循环温度 变化深入的模具厚度很薄。 图 6(c) 的 H13 模具材料 的 1~4 节点温度都有波动, 只有节点 5 没有波动。 这是由于 H13 的热导率介于铜和陶瓷之间。

图 7 (a) 为三种模具材料节点 1 的温度变化曲 线。 热平衡后节点 1 的 T max 陶瓷材料为 582℃ , H13 为 529℃ ,铜为 506℃ 。这说明导热系数越小,型腔表 面点最大温度越高。 节点 1 的波动幅度 (T max -T min ) 陶 瓷材料为 142℃ , H13 为 64℃ ,铜为 43℃ 。 型腔表面 点的温度波动幅度陶瓷材料最大, H13 次之, 铜最 小。 这说明型腔表面在吸热和散热时, 导热系数越小热量从型腔表面向模具基体或从基体向表面扩散 越困难,表面点温度波动幅度也就越大。 图 7(b) 为 三种模具材料节点 2 的温度变化曲线。 节点 2 在型 腔内部,离型腔表面一定距离。三种模具材料的型腔 次表面的温度波动幅度比型腔表面的温度波动幅度 小。 这是由于次表面不和高温铝以及低温的脱模剂 直接接触。 其吸热和散热都要通过该点到型腔表面 之间的模具材料的热传导来完成。 所以其对温度的 敏感性比型腔表面弱。 在次表面点 2 铜的波动幅度 最大, H13 次之,陶瓷材料最小。 这是由各种材料导 热系数所决定的。

3 结论

(1) 利用 PRO/E 和 PROCAST 建立了前盖铝合 金压铸的三维有限元模型。

(2) 分析了距型腔表面不同距离的 5 个节点的 温度变化曲线。指出 50 次压铸循环后模具进入热平 衡状态。距型腔表面越近点的温度波动幅度越大。

(3) 分析了 H13 、铜和陶瓷模具材料对型腔表面 点及次表面层温度曲线的影响。导热系数越大,型腔 表面点的温度波动幅度越小, 型腔次表层温度波动 幅度越大。

 
会员推荐
 
本站部分信息由企业自行提供,该企业负责信息内容的真实性、准确性及合法性,模具压铸网对此不承担任何保证责任
主办单位:易模网络   技术支持:易模网络 本站法律顾问:冯辉律师 QQ16227216
Copyright © 2005-2024 ※压铸模具网※ Inc All Rights Reserved.
客户服务热线:0574-86865909      邮箱:lh6m@163.com     备案号:浙ICP备13030037号-4
  浙公网安备33020602000967
压铸模具,北仑压铸,北仑模具,北仑压铸模具

模具报价微信扫一扫

X关闭